Optimizing the Likelihood with Sequential Monte–Carlo methods

نویسنده

  • P. Closas
چکیده

In this paper, a Sequential Monte–Carlo (SMC) method is studied to deal with nonlinear multivariate optimization problems arising from Maximum Likelihood (ML) estimation approaches. In this context, gradient–like methods are not efficient being the computational cost burdensome. Moreover, SMC provide an appealing way of introducing prior information in the estimation of parameters in general state–space models. Relying on SMC methods, the optimization algorithm is completely exposed and its pseudocode delivered for completely general ML problems. For the sake of completeness, the algorithm has been adapted and simulated in a GNSS application, where the use of prior information is of great interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Likelihood-free estimation of model evidence

Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few ...

متن کامل

Sequential Monte Carlo without likelihoods.

Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be...

متن کامل

Sequential-Based Approach for Estimating the Stress-Strength Reliability Parameter for Exponential Distribution

In this paper, two-stage and purely sequential estimation procedures are considered to construct fixed-width confidence intervals for the reliability parameter under the stress-strength model when the stress and strength are independent exponential random variables with different scale parameters. The exact distribution of the stopping rule under the purely sequential procedure is approximated ...

متن کامل

Computational Methods for a Class of Network Models

In the following article, we provide an exposition of exact computational methods to perform parameter inference from partially observed network models. In particular, we consider the duplication attachment model that has a likelihood function that typically cannot be evaluated in any reasonable computational time. We consider a number of importance sampling (IS) and sequential Monte Carlo (SMC...

متن کامل

Group Object Tracking with a Sequential Monte Carlo Method Based on a Parameterised Likelihood Function

Group objects are characterised with multiple measurements originating from different locations of the targets constituting the group. This paper presents a novel Sequential Monte Carlo approach for tracking groups with a large number of components, applicable to various nonlinear problems. The novelty in this work is in the derivation of the likelihood function for nonlinear measurement functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006